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A necessary condition of controllability for processes of heat and mass transfer 
in binary gas mixtures and liquid solutions is presented. The necessary and suf- 
ficient conditions for invertibility of the system under consideration are ob- 
tained. 

The problem of the controllability and invertibility of a system with distributed para- 
meters is now an urgent one. For example, [1-3] are devoted to its solution. A similar prob- 
lem arises in the theory of inverse problems of mathematical physics [4-7], when the question 
of the existence of solutions of these problems is investigated. 

The proper control of processes of chemical technology, in the occurrence of which heat 
and mass transfer plays the dominant role, is a decisive factor in obtaining output of the 
highest quality [8]. One of the problems of the control of a thermodiffusion process taking 
place in a two-component gas mixture is investigated in the present paper. 

Let a binary gas mixture fill a convex confined region ~ of R S with a boundary 0~ of 
class CI; n is the outward normal to the surface 0~ Under the assumption that heat and 
mass transfer take place at a constant pressure, the appearance and disappearance of one or 
the other component of the gas mixture is due only to phase or chemical transitions, which 
are not accompanied by heat release or absorption, and that all the thermophysical parameters 
are constant, we obtain the following system of parabolic equations [9]: 

V (h~ -- Oplo O0 DQ* hPlo + k AO + hi______)) 11. (1) 
or- = Dhplo + AO -}- 11, Ot ~ cp cp 

The first of these equations expresses the law of conservation of mass while the second ex- 
presses the law of conservation of thermal energy. 

At the initial time t = 0 the relative concentration p,o of the first component and the 
temperature 8 of the mixture are given, i.e., 

pao(X, O) = %(x), O(x, O) = q~(x). (2) 

The process under consideration takes place in the closed volume ~. Assuming that it 
is thermally insulated in this case, we obtain the equality to zero of the densities of the 
diffusional and heat fluxes at the boundary a~, i.e., 

OP,o [ = 0 ,  O0 I -=0. (3) 
On o~x[o, r'] ~ n  o~• r,] 

Introducing the notation 

u (x, t )=  (x, t) ) 
ko (x, t) ' 

A _= 

D -~-D 

DQ__% k 
c c9 
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.b (x, t )=  ~ (x, ~) - -  h 1 (x,  t) , (P (x) = ~1 (x) 

co % (x) 

and assuming  t h a t  the  q u a n t i t y  k T / T  i s  a c o n s t a n t ,  s i n c e  i t  v a r i e s  I n s i g n i f i c a n t l y  d u r i n g  the  
e n t i r e  p r o c e s s ,  and k /0  > DQ*kT/T, we o b t a i n  t he  f o l l o w i n g  mixed problem f o r  a u n i f o r m l y  p a r a -  
b o l i c  system in vector form: 

Ou 
.. (x, t) = A h u  (x, t) + b (x, t) Ix (x, l), (x, t) 6 fl = N • (0, T'), (4) 

Ot 

u(x, O) = ~(x), x E ~ ,  (5) 

Ou I = 0 ,  (x, t )Cr=ON•  (6) 
On [r 

The c o n t r o l  problem c o n s i s t s  in  the  d e t e r m i n a t i o n  o f  t he  f u n c t i o n  ( t h e  c o n t r o l  f u n c t i o n )  
[1 (x, t) E t-]a'cz/2 ~ )  and the  s o l u t i o n  u(x, t),E H 2+~' 1+~/2 (~) c o r r e s p o n d i n g  to  i t  ( t h e  v e c t o r  

f u n c t i o n  o f  s t a t e )  f o r  the  problem ( 4 ) - ( 6 )  such  t h a t  the  c o n d i t i o n  

u(x ,  h ) = ~ ( x ) ,  x E ~ ,  O < t ~ < T ' ,  (7) 

is satisfied, i.e., at the fixed time tx the relative concentration of the first component 
and the temperature of the mixture must coincide with the values assigned in advance. 

Let us find the necessary condition for controllability of the transition of the system 
(4) from the initial state ~ (x) to the final state ~(x) in the time t x. 

Let a solution of the problem (4)-(7) exist; then from the results of [i0], when the con- 
sistency conditions are satisfied, it follows that the solution of the direct problem (4)-(6) 
can be represented in the form 

t 

.(x, t)= ~a(~, v, t, o)~p(v)dv+ J'~ ~(~, y, t, ~)b(y, "Oh(y, .Oaya~, (8) 
oE~ 

where G(x, y; t, z) is Green's function for the problem under consideration. 

Since the condition (7) must be satisfied at t = tt, we have the equality 

t! 

, (x) = ~ G (x, y, t~, 0) r (y) 4V + I" .! G (x, V, G, *) b (y, "~) I~ (y, I:) dyd,. 
E5 b2~ 

The following the procedure expounded in [6], we can show that the condition 

rank [P (x); w (x)] = rank [P (x)] ~r a~ x E ~, 

where 

(9) 

tt 

(x) = r (x) - .f a (~, v, t ,  o) ,p (v) dy; e (x) = .! .f C (x, v, t,, "0 b(y, "Ox b* (y, "0 a*  (x, y, h, ~) exp [~-(h--  ~)-'] dyd~ 
o~  

(* denotes transposition), is necessary for the controllability of the system (4). 

Another approach to finding u(x, t) and Ix(x, t) from the given classes is based on the 
method of solving the inverse problem (4)-(6) with the condition of overdetermination of the 
type 

U(Xo, t) = ~(t) ,  t C[O, T,], XoE~. (10) 

By analogy with the preceding problem, we designate 

(t) = ~ (t) - -  I G (Xo, y, t, O) q~ (g) dE, 

t 

b (t) = .i ~" G (Xo, V, t, ,) b (V, I:) b* (g, ,) G* (Xo, g, t, *) exp [-- (t-- ,)  -=1 dv#c. 
o ~  
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Then, when the correspondence 

~(Xo) = ~ (0) (11) 

is satisfied, the condition 

rank [/~ (t); w(t)]=rank[fi(t)] forany tE[O, T'] (12) 

i s  n e c e s s a r y  and s u f f i c i e n t  f o r  the  e x i s t e n c e  o f  the  p a i r  {u(x, t), II(x, t )}:uEH 2+=' i+~/2 (~), 
116H ~'~/2 (~) , yielding the solution of the problem (4)-(6), (i0). 

Before proceeding to the proof of this statement, we consider the auxiliary problem (4)- 
(6) with an overdetermination condition of the type 

u(xo, tl) = ~ l ~ ( h ) ,  (13) 

where  (xo,  t , )  i s  a f i x e d  p o i n t  o f  ~ ) < ( 0 ,  T']. 

Using the results of [6], one can easily show that a solution {u(x, t), l,(x, t)} of the 
inverse problem (4)-(6), (13) exists in the indicated classes when and only when rank[P(tl); 
w(t,)] = rank [ P ( t l )  ] .  

We p r o v e  t h a t  the  c o n d i t i o n  (11) i s  n e c e s s a r y  from the  c o n t r a r y ,  i . e . ,  suppose  a p a i r  
{u(x ,  t ) ,  I x ( x ,  t ) }  e x i s t s  f o r  which  the  c o n d i t i o n s  ( 4 ) - ( 6 ) ,  ( 1 0 ) ,  (11) a r e  s a t i s f i e d ,  w h i l e  
there exists att E [0, T'] such that [P*tl); w(tl)] > rank[P(tl)], but then the inverse prob- 
lem (4)-(6), (13) has no solution, on the strength of the criterion persented above. Conse- 
quently, the problem (4)-(6), (i0) also cannot have a solution from the indicated classes. 
A contradiction is obtained. 

Now let the condition (12) be satisfied. This means that a z @ R = exists such that 

w (t) = P (t) z for all t C IO, T']. (14) 

As was shown in [i0], in the classes under consideration the problem (4)-(6) is equiva- 
lent to the system of internal equations (8), or for x = xo we obtain the system 

t 

( ~ O(Xo, y, t, ~)b(y, T) 11(y, "c) dyd~ = re(t). 
oN 

We seek the function Ix(x, t) in the form Ix(x, t) = g(x)f(t), where f(t) is unknown 

while g(x) is chosen so that the kernel K(t, "0 = ~O(xo, y, t, ~)>~ b(y, z)g(y)dy satisfies the 
N 

conditions required in [5]. Then for the determination of f(t) we have a Volterra system of 
integrals equations of the first kind, 

t 

K (t, *) f (T) dr = w (t), 
0 

which, by virtue of the condition (14), is consistent and can be reduced to a Volterra system 
of equations of the second kind, solvable in the class Ha/2([0,T']). Then for f(t) we deter- 
mine Ix(x, t), while from Eq. (8) we determine u(x, t), i.e., the solution of the inverse 
problem (4)-(6), (i0) is found. 

In the problem under consideration the condition (12) expresses the criterion of in- 
vertibility (to the left) [3] of the system (4). 

From the proof it is seen that the solution of the inverse problem (4)-(6), (I0) is not 
unique. To obtain a unique solution one must set an additional restriction on the state, 
such as an integral one. And then one must solve the problem of optimum control. 

In conclusion, we note that similar problems also arise for processes of heat and mass 
transfer in liquid solutions. 
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NOTATION 

p~o(x, t), relative concentration of the first component in the region ~ ={(6 t)6~X(E U), 
~R3};O(x.t) , temperatureof the mixture in the region ~ on the Celslum scale; T, temperature 
of the mixture on the Kelvin scale; kT, thermodiffusion coefficient; D, coefficient of inter- 
diffusion of the mixture; I~, density of internal sources of the first component of the mix- 
ture; Q*, specific heat of isothermal transfer; c, specific heat of the mixture; O, density 
of the mixture; h i , specific enthalpy of the i-th component; A, Laplace operator in R~; k, 
coefficient of thermal conductivity of the mixture. 
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